烟草科技
2016-03-29 星期二
烟草农学:2020 ,6:1-8
赵利杰, 郑美, 王中, 谢小东, 罗朝鹏, 李宏光, 武明珠. 烟草NtGT-2基因的克隆及表达分析[J]. 烟草科技, 2020 (6): 1-8.
ZHAO Lijie, ZHENG Mei, WANG Zhong, XIE Xiaodong, LUO Zhaopeng, LI Hongguang, WU Mingzhu. Cloning and expression of NtGT-2 gene from Nicotiana tabacum[J]. Tobacco Science & Technology, 2020 (6): 1-8.

烟草NtGT-2基因的克隆及表达分析
赵利杰1, 郑美2, 王中1, 谢小东1, 罗朝鹏1, 李宏光2, 武明珠1
1. 中国烟草总公司郑州烟草研究院, 郑州高新技术产业开发区枫杨街2号 450001;
2. 湖南省烟草公司郴州市公司, 湖南省郴州市北湖区燕泉北路 423000
摘要:
Trihelix转录因子(Trihelix transcription factors)是调节植物生长发育的一类重要的转录因子,在植物抵御各种逆境胁迫过程中发挥重要作用。为研究烟草中Trihelix转录因子,以普通烟草品种K326为试验材料,采用基因同源克隆方法从烟草中克隆到一个Trihelix转录因子基因。生物信息学分析结果显示,该基因属于Trihelix转录因子GT-2亚家族,其开放阅读框(ORF)为1 176 bp,共编码391个氨基酸,预测分子量为45.01 kDa,等电点为5.80,命名为NtGT-2。二级结构分析发现NtGT-2蛋白含有一个Trihelix家族典型的Trihelix保守结构域(SANT结构域)和一个卷曲螺旋结构域(Coiled-coil结构域)。实时荧光定量PCR结果表明,该基因在烟草的不同组织中表达量具有一定的差异性,在茎节、茎秆及腋芽中的表达量较高,在叶片(5叶、15叶)和根中(侧根、须根)的表达量较低。研究还发现该基因对脱落酸(10 μmol/L ABA)、高盐(200 mmol/L NaCl)、低温(4℃)和15% PEG6000处理具有不同程度应答,推测该基因在烟草抵御非生物胁迫中发挥作用。
关键词:    烟草    Trihelix转录因子    NtGT-2    非生物胁迫    基因表达分析   
Cloning and expression of NtGT-2 gene from Nicotiana tabacum
ZHAO Lijie1, ZHENG Mei2, WANG Zhong1, XIE Xiaodong1, LUO Zhaopeng1, LI Hongguang2, WU Mingzhu1
1. Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China;
2. Chenzhou Branch of Hunan Provincial Tobacco Company, Chenzhou 423000, Hunan, China
Abstract:
Trihelix transcription factors are a class of important transcription factors that regulate plant growth and development, and play important roles in the plant resistance to various stresses. In order to investigate Trihelix transcription factors in tobacco, a Trihelix transcription factor gene was cloned from tobacco by gene homologous cloning method and named as NtGT-2. Bioinformatics analysis showed that NtGT-2 gene belonged to the GT-2 subfamily of Trihelix transcription factors, and its maximum open reading frame (ORF) was 1 176 bp, which encoded a total of 391 amino acids. The molecular weight of NtGT-2 was predicted to be 45.01 kDa with an isoelectric point of 5.80. The secondary structure analysis indicated that NtGT-2 protein contained a typical Trihelix family structure domain (SANT structure domain) and a curly spiral structure domain (Coiled-coil structure domain). The results of real-time fluorescence quantitative PCR showed that the expressions of NtGT-2 in different tissues of tobacco were different, and the expression level was higher in stalk nodes, stalks and axillary buds and lower in leaves and roots. NtGT-2 had different responses to abscisic acid (10 μmol/L ABA), salt stress (200 mmol/L NaCl), low temperature (4℃), and 15% PEG6000 treatment, which suggested that NtGT-2 could play an important role in tobacco resisting abiotic stress.
Key words:    Tobacco    Trihelix transcription factor    NtGT-2    Abiotic stress    Gene expression analysis   
收稿日期: 2020-01-15     修回日期: 2020-02-26
DOI: 10.16135/j.issn1002-0861.2020.0032
基金项目: 郑州烟草研究院院长科技发展基金项目“烟草转录因子NtMYB59调控绿原酸合成分子机制研究”(902018CA0260);国家烟草专卖局资助项目“应用SNP芯片鉴定影响烟气苯酚、巴豆醛含量的烟草相关基因位点及互作图谱构建”(110201901020(JY-07))。
通讯作者: 武明珠, E-mail:mingzhuwus@126.com     Email:mingzhuwus@126.com
作者简介: 赵利杰(1993-),硕士,主要从事烟草功能基因研究。E-mail:2453584680@qq.com
相关功能
PDF(1199KB) Free
打印本文
HTML
把本文推荐给朋友
作者相关文章
赵利杰  在本刊中的所有文章
郑美  在本刊中的所有文章
王中  在本刊中的所有文章
谢小东  在本刊中的所有文章
罗朝鹏  在本刊中的所有文章
李宏光  在本刊中的所有文章
武明珠  在本刊中的所有文章

参考文献:
[1] Li X,Qin G J,Chen Z L,et al. A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis[J]. Plant Molecular Biology,2008,66(3):315-327.
[2] Kuhn R M,Caspar T,Dehesh K,et al. DNA binding factor GT-2 from Arabidopsis[J]. Plant Molecular Biology,1993,23(2):337-348.
[3] Ashburner M, Ball C A, Blake J A, et al. Gene ontology:Tool for the unification of biology[J]. Nature Genetics,2000,25(1):25-29.
[4] Zhou D X. Regulatory mechanism of plant gene transcription by GT-elements and GT-factors[J]. Trends in Plants Science,1999,4(6):210-214.
[5] 关秋玲,陈焕新,张毅,等. 植物GT元件和GT因子的研究进展[J]. 遗传,2009,31(2):123-130. GUAN Qiuling,CHEN Huanxin,ZHANG Yi,et al. Progresses on GT elements and GT factors in plants[J]. Hereditas(Beijing),2009,31(2):123-130.
[6] Dehesh K,Hung H,Tepperman J M,et al. GT-2:a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity[J]. The EMBO Journal,1992,11(11):4131-4144.
[7] Qin Y,Ma X,Yu G H,et al. Evolutionary history of trihelix family and their functional diversification[J]. DNA Research,2014,21(5):499-510.
[8] Kaplan-Levy R N,Brewer P B,Quon T,et al. The trihelix family of transcription factors-light, stress and development[J]. Trends in Plant Science,2012,17(3):163-171.
[9] 周宏,钱娇,李荣芳,等. 拟南芥Trihelix转录因子基因家族研究[J]. 江苏科技大学学报(自然科学版), 2017,31(2):231-236,258. ZHOU Hong, QIAN Jiao, LI Rongfang, et al. Research of the Arabidopsis trihelix transcription factor gene family[J]. Journal of Jiangsu University of Science and Technology(Natural Science),2017, 31(2):231-236,258.
[10] 纪剑辉,周颖君,吴贺贺,等. 水稻Trihelix转录因子家族全基因组分析及功能预测[J]. 遗传,2015, 37(12):1228-1241. JI Jianhui, ZHOU Yingjun, WU Hehe, et al. Genome-wide analysis and functional prediction of the trihelix transcription factor family in rice[J]. Hereditas (Beijing),2015,37(12):1228-1241.
[11] Tian A G,Wang J,Cui P,et al. Characterization of soybean genomic features by analysis of its expressed sequence tags[J]. Theoretical and Applied Genetics, 2004,108(5):903-913.
[12] 张春利,袁岐,赵婷婷,等. 辣椒Trihelix转录因子家族的生物信息学分析[J]. 中国农学通报,2017, 33(17):32-38. ZHANG Chunli,YUAN Qi,ZHAO Tingting,et al. Bioinformatics analysis of trihelix transcription factors from Chilli pepper[J]. Chinese Agricultural Science Bulletin,2017,33(17):32-38.
[13] Gilmartin P M, Memelink J, Hiratsuka K,et al. Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element[J]. The Plant Cell,1992,4(7):839-849.
[14] Pagnussat G C. Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis[J]. Development,2005, 132(3):603-614.
[15] Tzafrir I, Pena-Muralla R, Dickerman A, et al. Identification of genes required for embryo development in Arabidopsis[J]. Plant Physiology,2004,135(3):1206-1220.
[16] Smalle J,Kurepa J,Haegman M,et al. The trihelix DNA-binding motif in higher plants is not restricted to the transcription factors GT-1 and GT-2[J]. Proceedings of the National Academy of Sciences of the United States of America,1998,95(6):3318-3322.
[17] Breuer C,Kawamura A,Ichikawa T,et al. The trihelix transcription factor GTL1 regulates ploidy-dependent cell growth in the Arabidopsis trichome[J]. The Plant Cell, 2009, 21(8):2307-2322.
[18] Li C B,Zhou A L,Sang T. Rice domestication by reducing shattering[J]. Science,2006,311(5769):1936-1939.
[19] Griffith M E, Da Silva Conceição A, Smyth D R. PETAL LOSS gene regulates initiation and orientation of second whorl organs in the Arabidopsis flower[J]. Development,1999,126(24):5635-5644.
[20] Brewer P B,Howles P A,Dorian K,et al. PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower[J]. Development,2004,131(16):4035-4045.
[21] 李红霞,汪妤,张战凤,等. 植物转录因子与作物抗逆胁迫关系的研究进展[J]. 麦类作物学报,2013, 33(3):613-618. LI Hongxia, WANG Yu, ZHANG Zhanfeng, et al. Progress in relationship between plant transcription factors and crop stress tolerance[J]. Journal of Triticeae Crops,2013,33(3):613-618.
[22] Park H C,Kim M L,Kang Y H,et al. Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor[J]. Plant Physiology, 2004,135(4):2150-2161.
[23] Xie Z M,Zou H F,Lei G,et al. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis[J]. PLoS One,2009,4(9):e6898.
[24] Weng H,Yoo C Y,Gosney M J,et al. Poplar GTL1 is a Ca2+/calmodulin-binding transcription factor that functions in plant water use efficiency and drought tolerance[J]. PLoS One,2012,7(3):e32925.
[25] Xi J,Qiu Y J,Du L Q,et al. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses[J]. Plant Science,2012,185-186:274-280.
[26] Livak K J,Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CTmethod[J]. Methods,2001,25(4):402-408.
[27] Perisic O,Lam E. A tobacco DNA binding protein that interacts with a light-responsive box II element[J]. The Plant Cell,1992,4(7):831-838.
[28] Lam E. Domain analysis of the plant DNA-binding protein GT1a:requirement of four putative alpha-helices for DNA binding and identification of a novel oligomerization region[J]. Molecular and Cellular Biology,1995,15(2):1014-1020.
[29] Kitakura S, Fujita T, Ueno Y, et al. The protein encoded by oncogene 6b from Agrobacterium tumefaciens interacts with a nuclear protein of tobacco[J]. The Plant Cell,2002,14(2):451-463.
[30] 周颖君,王浩,纪剑辉. 植物Trihelix转录因子家族的分类、结构和功能研究进展[J]. 湖北农业科学, 2015,54(22):5501-5503, 5547. ZHOU Yingjun, WANG Hao, JI Jianhui. Research progress of classification, structural characteristics and function of the plant trihelix transcription factor family[J]. Hubei Agricultural Sciences, 2015, 54(22):5501-5503, 5547.
[31] 李月,孙杰,陈受宜,等. 棉花转录因子GhGT30基因的克隆及转录功能分析[J]. 作物学报,2013,39(5):806-815. LI Yue,SUN Jie,CHEN Shouyi,et al. Cloning and Transcription function analysis of cotton transcription factor GhGT30 gene[J]. Acta Agronomica Sinica, 2013,39(5):806-815.
[32] 李月,刘晓东,董永梅,等. 棉花Trihelix转录因子GhGT29基因的克隆及功能分析[J]. 遗传,2015,37(12):1218-1227. LI Yue, LIU Xiaodong, DONG Yongmei, et al. Cloning and functional analysis of the cotton trihelix transcription factor GhGT29[J]. Hereditas(Beijing), 2015,37(12):1218-1227.
[33] 李月,刘晓东,谢宗铭,等. 棉花GhGT-2转录因子的克隆及其功能分析[J]. 中国农业科学,2015,48(24):4872-4884. LI Yue, LIU Xiaodong, XIE Zongming, et al. Cloning and function analysis of cotton transcription factor GhGT-2[J]. Scientia Agricultura Sinica,2015, 48(24):4872-4884.
相关文献:
1.李晓旭, 郭存, 刘成, 李虹, 李伟, 蒋勋, 郭永峰.普通烟草NtNAC072基因的克隆、鉴定及表达模式分析[J]. 烟草科技, 2019,52(3): 10-17
2.王姗姗, 杨军, 林福呈, 孟祥宇, 余涵, 张剑锋, 王中.烟草HD-ZIP Ⅳ转录因子NtPDF2基因的克隆及表达分析[J]. 烟草科技, 2018,51(4): 1-11
3.陈倩, 卓维, 李佳皓, 鲁黎明, 李立芹.烟草Nt14-3-3基因的克隆及生物信息学和表达模式分析[J]. 烟草科技, 2018,51(1): 1-7
4.王姗姗, 赵影影, 李超杰, 谢小东, 武明珠, 李锋, 杨军, 王中.烟草转录因子MYB12基因克隆及表达模式分析[J]. 烟草科技, 2017,50(8): 1-9
 烟草科技

版权所有:本网站由国家烟草专卖局科教司主管、中国烟草总公司郑州烟草研究院主办

中国烟草科技信息中心承办 所有数据不得复制豫ICP备05011121号

Email:tst@tobaccoinfo.com.cn