本平台为互联网非涉密平台,严禁处理、传输国家秘密或工作秘密

基于改进频域通道注意力机制的卷烟条盒商标纸真伪鉴别方法

Authenticity identification method of cigarette box trademark paper based on improved frequency domain channel attention mechanism

  • 摘要: 为提升真假卷烟鉴别的效率与准确性,提出一种基于改进频域通道注意力网络(IFcaNet)的卷烟条盒商标纸真伪鉴别方法。该方法首先将卷烟条盒的图像切分成3个子图,应用频域通道注意力网络(FcaNet)对每个子图进行深入的特征提取,通过自注意力模块,实现子图特征之间的有效交互,增强特征的表达能力。然后,通过最大池化和平均池化操作,分别获取条盒图像的显著特征和平均特征,两者的结合为模型提供更全面的图像信息。最后,将最大池化和平均池化得到的向量拼接,输入到全连接层进行二元分类。结果表明,IFcaNet在分类准确性和模型泛化能力方面均优于现有的对照模型,展示出其在真假卷烟鉴别领域的应用潜力。

     

    Abstract: This study introduces IFcaNet, an advanced method for authenticating cigarette packaging. It segments the image into three sub-images, employs FcaNet for detailed feature extraction, and leverages self-attention to boost feature representation. By integrating salient and average features through max and average pooling, the model gains comprehensive image insights. The concatenated features are then classified using a fully connected layer. Experimental results show that IFcaNet has superior classification accuracy and generalization over existing models, highlighting its effectiveness in counterfeit detection.

     

/

返回文章
返回