本平台为互联网非涉密平台,严禁处理、传输国家秘密或工作秘密

基于深度迁移学习的烟叶初烤过程中理化指标的预测方法

A method for predicting physical and chemical indicators of the tobacco leaf initial curing process based on deep transfer learning

  • 摘要: 为了无损、高效地监测初烤过程中烟叶理化指标的变化,提出了一种轻量化MobileNetV2_CBAM深度迁移学习回归模型。该模型以预训练的MobileNetV2为特征提取骨干网络,在末端分别引入卷积注意力模块(CBAM)和深度回归头,以增强模型的特征表达能力及非线性拟合能力。利用MobileNetV2_CBAM模型对初烤过程中烟叶的含水率、淀粉含量、还原糖含量及总糖含量进行预测,结果表明:①在MobileNetV2模型中同时引入CBAM和深度回归头时,模型的预测性能明显提升。②MobileNetV2_CBAM模型的浮点运算次数(FLOPs)为0.561 G,总参数量为15.43 M,对4项理化指标预测结果的决定系数(R2)范围为0.865 1~0.906 5,平均绝对误差(MAE)范围为0.062 2~0.983 1,均方根误差(RMSE)范围为0.092 7~2.043 5,残差预测偏差(RPD)范围为2.594 3~4.646 2,每秒处理帧数(FPS)范围为100.578 0~121.254 0,该模型在预测性能、速度与部署成本之间达到了良好平衡。③不同烘烤阶段,MobileNetV2_CBAM模型对4项理化指标预测结果的解释方差分数范围为0.73~0.91,具有较好的预测能力。④在复杂背景下,MobileNetV2_CBAM模型对4项理化指标预测结果的R2范围为0.788 5~0.870 1,仍具有较好预测能力。该研究为初烤过程中烟叶理化指标的在线监测提供了理论参考。

     

    Abstract: To achieve lossless and efficient monitoring of physicochemical changes in tobacco leaves during the initial curing process, a lightweight MobileNetV2_CBAM deep transfer learning regression model is proposed. This model employs the pre-trained MobileNetV2 as its feature extraction backbone network, incorporating a convolutional attention module (CBAM) and a deep regression head at the end to enhance feature expression capability and nonlinear fitting ability. Using the MobileNetV2_CBAM model to predict moisture content, starch content, reducing sugar content, and total sugar content of tobacco leaves during initial curing, the results indicate: 1) Simultaneously incorporating CBAM and a deep regression head into the MobileNetV2 model significantly improves predictive performance. 2) The MobileNetV2_CBAM model achieves 0.561 G floating-point operations (FLOPs) with total parameters of 15.43 M. The coefficient of determination (R²) for predicting the four physicochemical indicators ranged from 0.8651 to 0.9065, the mean absolute error (MAE) ranged from 0.0622 to 0.9831, the root mean square error (RMSE) ranged from 0.0927 to 2.0435, Residual Prediction Deviation (RPD) ranged from 2.5943 to 4.6462, and Frames Per Second (FPS) ranged from 100.5780 to 121.2540. This model achieved a favorable balance between predictive performance, processing speed, and deployment cost. 3) Across different baking stages, the MobileNetV2_CBAM model achieved an explanatory variance score ranging from 0.73 to 0.91 for predicting four physicochemical indicators, demonstrating strong predictive capability. 4) In complex backgrounds, the R² values for the MobileNetV2_CBAM model's predictions of the four physicochemical indicators ranged from 0.7885 to 0.8701, maintaining strong predictive capability. This study provides theoretical reference for online monitoring of physicochemical indicators during the initial curing process of tobacco leaves.

     

/

返回文章
返回