本平台为互联网非涉密平台,严禁处理、传输国家秘密或工作秘密
袁鹏, 刘申波, 马胜军, 易旋, 乔腾飞, 龙杨, 许磊, 王森, 李录甜, 朱立. 成品烟箱自动装车/卸车设备码垛空缺监测系统的设计[J]. 烟草科技, 2025, 58(8): 103-111. DOI: 10.16135/j.issn1002-0861.2024.0722
引用本文: 袁鹏, 刘申波, 马胜军, 易旋, 乔腾飞, 龙杨, 许磊, 王森, 李录甜, 朱立. 成品烟箱自动装车/卸车设备码垛空缺监测系统的设计[J]. 烟草科技, 2025, 58(8): 103-111. DOI: 10.16135/j.issn1002-0861.2024.0722
YUAN Peng, LIU Shenbo, MA Shengjun, YI Xuan, QIAO Tengfei, LONG Yang, XU Lei, WANG Sen, LI Lutian, ZHU Li. Design of system for monitoring vacant spaces between cigarette cases palletized in truck[J]. Tobacco Science & Technology, 2025, 58(8): 103-111. DOI: 10.16135/j.issn1002-0861.2024.0722
Citation: YUAN Peng, LIU Shenbo, MA Shengjun, YI Xuan, QIAO Tengfei, LONG Yang, XU Lei, WANG Sen, LI Lutian, ZHU Li. Design of system for monitoring vacant spaces between cigarette cases palletized in truck[J]. Tobacco Science & Technology, 2025, 58(8): 103-111. DOI: 10.16135/j.issn1002-0861.2024.0722

成品烟箱自动装车/卸车设备码垛空缺监测系统的设计

Design of system for monitoring vacant spaces between cigarette cases palletized in truck

  • 摘要: 为解决成品烟箱自动装车/卸车设备在装车过程中因码垛空缺而导致的烟箱混乱、货物损坏和设备故障等问题,基于计算机视觉技术设计一种成品烟箱码垛空缺监测系统。系统由2台广角相机、开发板、光源和警报器等组成,工作流程为:①对固定安装的双广角相机所采集的图像进行拼接,以实现大视野和宽视角的图像采集;②采用5种视觉检测算法(YOLOv5-s、YOLOv7、YOLOv8-s、YOLOv9-s和RT-DETR-R50)作为候选模型,将成品烟箱从图像背景中分离出来并区分前、后排烟箱;③通过最大池化卷积将检测到的烟箱位置映射至创建的码垛空间矩阵中;④通过对码垛空间矩阵的动态分析,自动识别出码垛空缺并实时触发警报。对监测系统进行应用测试,结果表明:5个候选模型中,YOLOv9-s能够兼顾检测精度(前排烟箱和后排烟箱的mAP0.5分别为98.3%和96.4%)和检测速度(帧率为54 FPS),满足监测系统的实时性和准确性需求;监测系统对码垛空缺的报警准确率为98%,平均报警延迟时间为347 ms,帧率保持在25 FPS以上。该系统可为提高烟草行业仓储物流环节的自动化水平提供技术支持。

     

    Abstract: To address issues such as disorganized cigarette cases, product damage and equipment malfunctions caused by vacant spaces formed in the palletizing process of the automated cigarette case truck loading/unloading system, a monitoring system based on computer vision technology was designed. The system consists of two wide-angle cameras, a development board, a light source and an alarm system. The system works as follows: 1) The images captured by the two fixed-mounted wide-angle cameras are stitched together to form an image of large visual field and wide visual angle. 2) Five algorithms (YOLOv5-s, YOLOv7, YOLOv8-s, YOLOv9-s and RT-DETR-R50) are used as candidate models to isolate an individual cigarette case from the background and distinguish between the front row and rear row where the case belongs to. 3) The location of the targeted case is mapped onto a created palletizing space matrix via max-pooling convolution. 4) By dynamic analysis of the palletizing space matrix, vacant space is automatically identified and alarm is triggered real-timely. Application tests of the monitoring system showed that, YOLOv9-s best matched between detection accuracy with speed of the five candidate models. It achieved mAP0.5 values of 98.3% and 96.4% for the front and rear rows of the palletized cases respectively, and a detection speed of 54 FPS. The vacant space detection accuracy of the monitoring system was 98%, with an average alarm delay of 347 ms, and the frame rate remained above 25 FPS. This system provides technical support for enhancing automation in the warehousing and logistics processes of the tobacco industry.

     

/

返回文章
返回