本平台为互联网非涉密平台,严禁处理、传输国家秘密或工作秘密
汤红忠, 高尚, 陈亚双, 杜薇, 杨俊杰, 徐大勇, 堵劲松, 张雷, 罗登炎, 范明登. 基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法[J]. 烟草科技, 2025, 58(8): 66-76. DOI: 10.16135/j.issn1002-0861.2025.0015
引用本文: 汤红忠, 高尚, 陈亚双, 杜薇, 杨俊杰, 徐大勇, 堵劲松, 张雷, 罗登炎, 范明登. 基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法[J]. 烟草科技, 2025, 58(8): 66-76. DOI: 10.16135/j.issn1002-0861.2025.0015
TANG Hongzhong, GAO Shang, CHEN Yashuang, DU Wei, YANG Junjie, XU Dayong, DU Jinsong, ZHANG Lei, LUO Dengyan, FAN Mingdeng. A method for leaf vein segmentation and measurement of morphological parameters of tobacco leaves based on hyperspectral images and deep learning[J]. Tobacco Science & Technology, 2025, 58(8): 66-76. DOI: 10.16135/j.issn1002-0861.2025.0015
Citation: TANG Hongzhong, GAO Shang, CHEN Yashuang, DU Wei, YANG Junjie, XU Dayong, DU Jinsong, ZHANG Lei, LUO Dengyan, FAN Mingdeng. A method for leaf vein segmentation and measurement of morphological parameters of tobacco leaves based on hyperspectral images and deep learning[J]. Tobacco Science & Technology, 2025, 58(8): 66-76. DOI: 10.16135/j.issn1002-0861.2025.0015

基于高光谱图像和深度学习的烟叶叶脉分割及形态参数测量方法

A method for leaf vein segmentation and measurement of morphological parameters of tobacco leaves based on hyperspectral images and deep learning

  • 摘要: 为解决烟叶叶脉形态参数计算效率低、人工误差大、批量处理能力不足等问题,基于高光谱图像和深度学习技术,构建了烟叶叶脉分割网络(Tobacco Vein Network,TVU-Net),并提出了一种形态参数智能测量方法。采用主成分分析(Principal Components Analysis,PCA)对高光谱烟叶图像数据进行降维,提取关键特征波长并减少数据冗余;通过TVU-Net实现叶脉的细粒度分割,该网络主要包括可变形卷积(Deformable Convolution,DC)、CBAM(Convolutional Attention Block Module)和ASPP(Atrous Spatial Pyramid Pooling)模块。结果表明:①与SegNet、U-Net、U-Net++、TransUnet及FR-UNet相比,TVU-Net的平均精确率、准确率、平均交并比(mean Intersection over Union,mIoU)及mDice系数均最高。②TVU-Net的分割噪声更少,能够更加完整地还原叶脉的整体结构,且可同时捕获主脉全局信息和支脉局部细节特征,具备对复杂叶脉结构的高精度分割能力。③随机选取的50张烟叶样本主脉长度的平均绝对误差为2.67 cm,平均相对误差为4.710%,结果具有较高的准确性。该研究为烟草自动化工业中叶脉形态分析与参数测量提供了理论参考。

     

    Abstract: To address the issues of low computational efficiency, significant manual errors, and limited batch processing capability in the analysis of tobacco vein morphology, a deep learning network based on hyperspectral images was developed and named Tobacco Vein U-Net (TVU-Net) for intelligent measurement of leaf morphological parameters. Principal Component Analysis (PCA) was employed to reduce the dimensionality of the hyperspectral images of tobacco leaves, extracting key feature wavelengths and decreasing data redundancy. The TVU-Net integrated Deformable Convolution (DC), Convolutional Block Attention Module (CBAM), and Atrous Spatial Pyramid Pooling (ASPP) modules to achieve fine-grained vein segmentation. The results showed that: 1) Compared with SegNet, U-Net, U-Net++, TransUnet, and FR-UNet, the TVU-Net achieved the highest mean precision, accuracy, mean intersection over union (mIoU), and mDice coefficient. 2) The TVU-Net produced less segmentation noise, preserved the overall vein structure more completely, and captured both the global information of the main vein and the local details of the secondary veins, thus enabling high-precision segmentation of the complex vein structure. 3) On 50 randomly selected tobacco leaf samples, the mean absolute error in main vein length measurement was 2.67 cm, with an average relative error of 4.710%, indicating high measurement accuracy. This study provides a theoretical basis for the automated morphological analysis and parameter quantification of tobacco veins in industrial applications.

     

/

返回文章
返回